
Abstract We review the application of Brandon’s cri-

terion to identifying so-called ‘‘special’’ grain bound-

aries. The underlying principles of the Brandon

criterion, and others that have followed it, are explained,

and the choices of particular parameters within the cri-

teria are considered in the light of experimental infor-

mation in the literature. It is suggested that varying

choices of the parameters may be appropriate for dif-

fering applications. An experimental study of the sta-

bility of CSL-related triple junctions is used to evaluate

the applicability of Brandon-like criteria to these

microstructural features.

Introduction

In 1966, David Brandon published a paper in which he

set out to estimate the fraction of all grain boundaries

that might be described by the Coincident-Site Lattice

(CSL) model, assuming that certain deviations from

the exact CSL misorientation could be accommodated

by arrays of dislocations [1]. Although this paper was

arguably not particularly successful in its original goal

[2], it has become a classic of the literature on grain

boundaries because it introduced a simple formula for

the maximum angle of deviation from an exact coin-

cident-site lattice, Dhmax, that could be sustained by a

dislocation array, and this formula has become widely

used as a criterion for determining whether a grain

boundary has ‘‘special properties.’’ Although the 1966

paper has been extremely well-cited, most of the cita-

tions are related to the categorization of individual

boundaries based upon their crystallographic parame-

ters, which is an application that was never envisaged

in the original work. Our purpose in this paper is to

draw attention to some of the underlying concepts of

the Brandon criterion, particularly attending to those

issues that affect the use of the criterion in separating

‘‘special’’ from ‘‘general’’ grain boundaries.

Special grain boundaries may exhibit properties that

deviate from those of ‘‘random’’ or ‘‘general’’ large-

angle boundaries, such as:

• low interfacial energy;

• highly anisotropic interfacial energy;

• low susceptibility to segregation;

• low mobility, or conversely very high mobility;

• low susceptibility to grain boundary corrosion and

stress-corrosion cracking;

• low solute diffusivity;

• low propensity for heterogeneous nucleation of

second phases;

• low point-defect sink strength

• low electrical resistivity;

... and many others. In recent years the field of ‘‘grain

boundary engineering’’ has grown up around the idea

that it is possible, through careful processing, to in-

crease the fraction of special boundaries above the

level present in a random polycrystalline material [3],

and thereby improve the properties of the material.

Because grain boundary engineering depends critically
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upon identifying those boundaries that have special

properties, the Brandon criterion (along with other

related criteria described below) has become an

important indicator. It is typically expressed as

Dhmax ¼ 15�=
ffiffiffiffi

R
p

ð1Þ

where S is the ratio of the primitive CSL unit cell

volume to the primitive crystal unit cell volume.

S-values are usually considered to be significant from 1

(small-angle grain boundaries) up to some limit, which

is usually chosen to be 25, following Brandon.

A number of other criteria of specialness have been

suggested, and they all follow the same form as the

Brandon criterion, which can be expressed as

Dhmax ¼ h0:R
�n; 1 � R � Rmax ð2Þ

All published criteria use 15� as the value of h0,

and various users apply differing values of Smax,

according to their own preference. The main differ-

ences among the various criteria lie in the value of n.

Brandon used n = ½ [1]; Pumphrey has suggested

n = 2/3 [4]; Palumbo et al. prescribe n = 5/6 [5]; and

Ishida and McLean give the most restrictive condi-

tion, with n = 1 [6]. We proceed here, to examine the

theoretical underpinnings of this type of criterion of

specialness, and to examine the evidence that sup-

ports particular choices for the various parameters, in

an attempt to provide for better-informed usage,

applicable to particular materials properties, concerns

or conditions.

The value of h0

The value of h0 is almost universally chosen to be 15�,

corresponding to the largest angle for which the dis-

location-wall model of a small-angle boundary is

thought to apply, based upon the observation that the

energy of a grain boundary rises to that of a general

high-angle boundary at this misorientation [7]. Most of

the energy of such a boundary, of course, is stored in a

strain-field, extending into the adjacent grains by a

distance roughly equal to the dislocation spacing [8],

but many of the interesting and useful properties of

grain boundaries may be controlled more by the core

structure of the boundary, or they may be more sen-

sitive to the strain field than the energy is. For example,

solute diffusion along the axis of a tilt boundary clearly

occurs via pipe diffusion along the cores of the

boundary dislocations, as beautifully demonstrated by

the pioneering work of Turnbull and Hoffman [9]. In

this work, the grain boundary diffusivity is found to

increase with the calculated density of grain boundary

dislocations, up to 28�, considerably higher than

the traditional small-angle limit of 15�, because the

behavior in question is related to the core structure of

the grain boundary, which appears to be preserved to

larger angles than the strain-field that defines the grain

boundary energy. In a similar vein, Nakamichi [10, 11]

has measured the resistivity of grain boundaries in

aluminum for currents perpendicular to the boundary,

and finds that small-angle behavior extrapolates quite

well up to misorientations of 22�. This is apparently a

result of electron scattering from discrete regions of

low density in the grain boundary [12], which continue

to show steadily increasing density with misorientation,

even after the strain fields of the dislocations are

effectively cancelled out. Conversely, superconducting

currents across grain boundaries in YBa2Cu3O7-d

decrease very sharply before a misorientation of 8�, but

also appear to continue to fall continuously up to

misorientations of about 25� [13]. This would appear to

be a result of the sensitivity of magnetic vortex pinning

to localized strain, and the small value of h0 for large

supercurrents would appear to explain the lack of

observable impact of special behavior with respect to

superconductivity, in large-angle grain boundaries [14].

These examples all illustrate that, irrespective of

extension to special large-angle grain boundaries, the

appropriate value of h0 depends upon the property of

interest and should be chosen accordingly, rather than

relying on the canonical value of 15�.

Extension of small-angle behavior to CSL-related

boundaries

The basis of the Brandon criterion rests in the notion

that a boundary that deviates in its misorientation by a

small angle, Dh, from a CSL-misorientation, will have a

structure consisting of an array of secondary disloca-

tions, with Burgers vectors defined by the DSC lattice,

superimposed upon the structure of the perfect CSL

boundary, just as a small-angle boundary is made up of

an array of primary dislocations superimposed on the

perfect crystal (i.e. S = 1) structure.

For the purpose of a simple model, we can calculate

the spacing of the dislocations in the boundary as

S ¼ b=2

sinðDh=2Þ ð3Þ

where b is the Burgers vector of the dislocations in the

array. For small angles of deviation, this simplifies to
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S � b

Dh
ð4Þ

For a small-angle grain boundary in an FCC mate-

rial, this can be written as

S �
a0

�
ffiffiffi

2
p

h
ð5Þ

where a0 is the lattice parameter. The minimum

acceptable dislocation spacing is then taken to be

Smin �
a0

h0

ffiffiffi

2
p ð6Þ

where h0 is the largest angle for which ‘‘small-angle

behavior’’ is expected, typically 15�, as described

above. For larger angles, we usually rationalize that the

dislocations are too closely spaced to behave as distinct

line defects, and they ‘‘lose their physically distinct

identity.’’

It is often assumed that all of the properties of

coincidence-related large-angle boundaries can be

deduced by analogy with the corresponding properties

of small-angle grain boundaries. Although the structures

are in many respects similar, there can be some distinct

differences, too. The strain energy of such a boundary

is often assumed to be superimposed upon the ‘‘core’’

energy of the CSL-related boundary, as supported by

many observations of the strain-fields of secondary

dislocations [15, 16] so the energy variation can per-

haps be considered to be cusped at the CSL misori-

entation. Effects that depend upon the cores of

dislocations, such as diffusion or electron scattering,

however, may not follow the behavior of small-angle

grain boundaries, because the cores of DSC disloca-

tions can be denser than the surrounding material,

while the cores of primary dislocations are always less

dense [17].

The appropriate values for S

While it is commonly assumed that special properties

are associated with low values of S, the converse is not

necessarily true: not all low values of S produce special

properties. For example, low rates of diffusion-induced

grain boundary migration (DIGM) are observed for

symmetric tilt boundaries in copper, corresponding to

S = 5 and S = 17, but not for S = 13 [18]. The existence

of ‘‘preferred’’ and ‘‘non-preferred’’ boundaries has

been discussed in terms of a structural unit model, by

Sutton and Vitek [19]. While all of the boundaries that

fall into the ‘‘preferred’’ category are symmetric CSL-

related boundaries, not all of these boundaries are

preferred.

Another complication arises from the propensity of

low stacking-fault energy fcc metals to form twins, and

twin intersections resulting in increased incidences of

boundaries with S = 3N. It is not clear whether a S = 81

boundary has any special properties beyond its

increased incidence in certain fcc metals, but it is

probably true that a S = 27 boundary shows at least

some moderate level of specialness.

It is clear that any arbitrary cut-off, allowing con-

sideration of all values of S up to some limit, does not

correctly identify all special boundaries: it allows some

non-special ones to be included, and excludes some

that might have an effect on the properties of a

material. The inclusion of non-special boundaries is not

a significant problem, unless these are specifically

increased in the boundary population through pro-

cessing, but there is not yet any method that can

address a single type of CSL, such as S = 13.

The value of n and the assumptions underlying

the form of the equation

Brandon noted that the Burgers vector strength of

primitive dsc dislocations associated with CSL bound-

aries varies as a0

�
ffiffiffiffiffiffi

2R
p

, as illustrated for [100] rota-

tions in Fig. 1. This actually applies only to some of the

Fig. 1 Illustrating the essential relationships of the CSL size and
the dsc-lattice size to the value of S, for CSLs formed by
rotations about [100] in fcc crystals. The height of the CSL
perpendicular to the page is the same for all of these cases. The
lateral dimension of the CS L varies as S1/2, while the dsc-lattice
size (fine mesh) varies as S–1/2
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Burgers vectors, as we shall discuss below. It is spe-

cifically true for Burgers vectors that are perpendicular

to the rotation axis associated with the CSL disorien-

tation, which we shall call the primary rotation axis.

These are sometimes referred to as b1 or b2 Burgers

vectors: b3 Burgers vectors have a component parallel

to the primary rotation axis.

Using this variation of the Burgers vector with S, we

can write the dislocation for CSL-related boundaries as

S ¼ a0

Dh
ffiffiffiffiffiffi

2R
p ð7Þ

and we have

Smin ¼
a0

Dhmax

ffiffiffiffiffiffi

2R
p ð8Þ

or

Dhmax ¼
a0

Smin

ffiffiffiffiffiffi

2R
p ð9Þ

Substitution of the fixed value of Smin from Eq. 6

recovers the Brandon criterion, showing that the one of

its basic assumptions is that all dislocations lose their

physically distinct identity at a fixed spacing, irrespec-

tive of their Burgers vector, or indeed the lattice

parameter of the material.

We can now investigate the effects of different

assumptions about the critical separation at which

grain boundary dislocations lose their identity. A sim-

ple model can be derived if it is assumed that the

critical dislocation spacing is proportional to the

Burgers vector, rather than a constant length. For this

case, smaller-strength dsc dislocations are allowed to

be closer together than for the Brandon case, before

they lose their identity. This model, however, produces

a fixed value of Dhmax ¼ h0, which obviously does not

accord with the collected observations from the grain

boundary engineering community. A different

approach derives from taking note of the fact that the

boundary periodicity is determined by the size of the

CSL, and that this would be the expected Peierls

energy periodicity for the dsc dislocations: when the

dislocations are closer together than this, they essen-

tially occupy the same Peierls valley, and should be

considered to have overlapped. This case has a critical

separation rather larger than Brandon’s. We can then

derive a criterion in which the critical separation is

given by the CSL size, or Smin ¼ a0

ffiffiffiffi

R
p

. Substituting

this expression into Eq. 9, we obtain an expression of

the same form as the Ishida–McLean criterion, with

n = 1 [6]. Other criteria, such as Pumphrey’s [4] or that

of Palumbo et al. [5] do not correspond to any clearly

identifiable assumption about the critical separation of

grain boundary dislocations, but rather reflect a con-

sideration of possible statistical variations in the pop-

ulations of different Burgers vectors of the interfacial

dislocations.

The Burgers vectors of grain boundary dislocations

All of the discussion of the form of the equation,

above, relates specifically to grain boundary disloca-

tions of the b1 and b2 types, which are perpendicular to

the primary rotation axis, and can accommodate

deviations (secondary rotations, away from the exact

CSL) that are also about the same axis. For cases other

than [100] and [111] rotations, the b1 and b2 moduli are

different, as shown in Fig. 2, but the overall variation is

still similar, and the form of the criterion is still only

affected by one’s assumptions about the critical dislo-

cation separation.

If the secondary rotation is about an axis other than

the primary rotation axis, then its accommodation

requires the inclusion of b3 dislocations. The strengths

of these Burgers vectors do not vary in the same way as

the b1 and b2 types, as shown in Fig. 2. They are rather

asymptotic to the plane spacing perpendicular to the

primary rotation axis, as S increases. As pointed out by

Balluffi and Schober [20], for large values of S, these

dislocations also correspond to the ‘‘plane matching’’

dislocations first described by Pumphrey [21]. Because

these dislocations retain large Burgers vectors, their

separation is larger than for the b1 and b2 types for

similar deviation angles. Thus, irrespective of our

assumption about the critical dislocation spacing, we

Fig. 2 The variation of dsc Burgers vector magnitudes with
S-value, for various rotation axes in fcc crystals. The b1 and b2

magnitudes vary as S-1/2. The b3 magnitudes asymptotically
approach the plane spacing along the rotation axis
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should expect that larger deviation angles can be

accommodated when the secondary rotation axis is

not the same as the primary rotation axis, and calls

for b3 dislocations in the boundary. If we follow the

Ishida–McLean assumption, that the minimum dislo-

cation spacing is given by the CSL dimension, then

these dislocations can also be spaced relatively closely

together: the relevant CSL dimension is the one

parallel to the primary rotation axis, which is a con-

stant, equal to the lattice period, for all values of S.

The greatest allowable deviation from the exact CSL

will thus always be for the case where the secondary

rotation axis is perpendicular to the primary axis. This

deviation will be relatively large, and not a strong

function of S, irrespective of the assumption about the

closest approach distance for the grain boundary

dislocations.

Another concern about the dislocations that

accommodate deviations from an exact CSL misori-

entation is that they need not be primitive dsc dislo-

cations. Lattice dislocations are observed on some

boundary planes, while dsc dislocations are preferred

on others, in the observations of Bollmann et al for

example [22]. Ichinose and Ishida have observed a

dislocation in a S11 boundary in gold, with two times

the primitive dsc Burgers vector [23], and this appears

to relate to the energy associated with a relatively large

step component of the primitive defect [24]. In each of

these examples the dislocations have larger-than-dsc

Burgers vectors, and would thus have larger spacings

for a given value of Dh. This would extend the range of

special behavior beyond the value predicted by any of

the criteria currently in use. In other cases, dsc dislo-

cations may dissociate into smaller Burgers vectors [17,

25] and this would correspondingly reduce the

acceptable range of misorientation to be associated

with a CSL.

Are all special boundaries CSL-related?

While it is established that many, but not all CSL-

related grain boundaries have special properties, it is

not clear whether there are special boundaries that

are not related to CSL’s. Plane-matching, or coinci-

dent axial direction (CAD) boundaries may be a case

in point, in which periodicity is preserved in only one

direction. Although it has been pointed out that these

boundaries can be described by large S-value CSL’s

[20] it is not clear whether this is especially useful in

the context of grain boundary engineering, where

these boundaries are not routinely identified. The

migration of plane-matching boundaries, however,

has been found to produce distinctive microstructures

[26].

A question of growing importance concerns the

possible existence of grain boundaries that have special

properties, but are not associated in any way with a

CSL, even to the extent of plane-matching in a single

direction. There is some evidence that boundaries that

are parallel to a low-index plane in at least one of the

adjacent crystals may occur with greater-than-random

probability [27], showing that the grain boundary plane

orientation may have greater significance than previ-

ously recognized. Another type of special boundary

may be associated with misorientations that represent

symmetry planes in misorientation-space. These

include cases like 45�/[100]; 90�/[110] and 30�/[111].

None of these produce CSLs, but Neumann’s principle

[28] requires that they produce extrema of energy with

respect to misorientation.

Experimental

A singular data-point on the utility of criteria of

interfacial specialness has been obtained during studies

of triple-junction behavior and properties. For the

purpose of these studies, we have designed a set of

triple junctions with fully-specified misorientations and

symmetric tilt grain boundary planes that ought to

produce energetically-stable configurations [29]. These

tricrystal designs take full account of the effect of

boundary inclination upon the boundary energy. One

of the proposed configurations is a S5:S5:S25 tricrystal,

as illustrated in Fig. 3. We have grown two copper

tricrystals of this nominal design by a seeded, vertical

Bridgman growth technique, with the triple junction

Fig. 3 Schematic crystallographic details of the tricrystal design
used for the experiments
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parallel to the growth direction of the specimen. This

gives us a long length of tricrystal which can be sliced

at different locations, allowing for reproducible

experiments to be performed. The details of the tri-

crystal growth process are described in a forthcoming

paper.

Results

The misorientations of the tricrystals have been

checked by Laue X-ray diffraction, and also by elec-

tron backscatter diffraction techniques. The precision

of individual orientation measurements was estimated

to be better than 1�, and repeated measurements of

misorientations with the EBSP system confirmed this

by reproducing within 0.8�. Errors in the actual mis-

orientations result from lack of precision in setting the

seed crystals, and the two tricrystals were found to

embody grain boundaries with the misorientations

shown in Table 1. In Table 1, the rotation axes are

rounded to the nearest integer, although the precise

measured values are used in calculating the reported

angular deviations from the ideal CSL misorientations

using conventional matrix methodology. Tricrystal 2 is

clearly closer to the intended misorientations than

Tricrystal 1.

The intended dihedral angles were checked by slic-

ing the tricrystals perpendicular to their length (i.e.

perpendicular to the nominal triple junction direction)

and performing routine metallography. Typical results

for Tricrystal 1 are shown in Fig. 4, and for Tricrystal 2

in Fig. 5. The measured dihedral angles for various

slices of the two tricrystals are given in Table 2. Tri-

crystal 1 exhibits quite widely varying dihedral angles,

with a range of as much as 26� of variation, even

though the misorientations of the grain boundaries do

not change.

Discussion

It is obvious that Tricrystal 1 is rather less successful

than Tricrystal 2, in meeting the design specifications.

The reasons for the striking variability of dihedral

angle at a fixed set of misorientations will be addressed

in a separate paper. For the tricrystal that is closer to

the target misorientations, the dihedral angles appear

to ‘‘lock in’’ within a degree of the intended values––

indeed, closer than the experimental error of mea-

surement––but the less precise adherence to the

desired misorientations for Tricrystal 1 seems to result

in much poorer control of the dihedral angles. This

provides an opportunity to assess the effectiveness of

the various criteria of specialness, described above, in

predicting the behavior of these grain boundary

junctions. Table 3 compares the measured Dh values

for the grain boundaries with the allowed deviations,

Table 1 Designed ‘‘target’’ and ‘‘actual’’ misorientations obtained
for two copper tricrystals

Grain
boundary

Target
misorientation

Measured
misorientation

Deviation

Tricrystal 1
S5 36.87�/[001] 32.0�/[1 1 25] 5.2�
S5 36.87�/[001] 41.7�/[1 1 17] 5.6�
S25 16.26�/[001] 16.5�/[1 1 13] 1.5�
Tricrystal 2
S5 36.87�/[001] 35.2�/[0 1 26] 2.0�
S5 36.87�/[001] 37.9�/[001] 1.2�
S25 16.26�/[001] 17.0�/[0 1 10] 1.7�

Fig. 4 Slices 2 and 3 from the first tricrystal, illustrating the
variation of the dihedral angles formed by the grain boundaries.
The approximate traces of the intended symmetrical tilt grain
boundary planes are indicated
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according to the various criteria. For this purpose, we

have chosen to assume that h0 is 15�, consistent with

the role of grain boundary energy in determining the

dihedral angles.

The Brandon criterion does not draw any distinction

between our tricrystal specimens: all of the boundaries

in both specimens satisfy this criterion. All three

boundaries in our second specimen meet the Pumphrey

criterion, while two out of the three in the first tri-

crystal fail this test. Increasing the magnitude of the

exponent to -3/4 gives us a previously unutilized cri-

terion which all three boundaries of Tricrystal 1 fail,

but two of the three from Tricrystal 2 pass. Larger

negative values of n make only the same level of dis-

tinction between the two tricrystals.

It is not yet clear whether a triple junction may have

‘‘special’’ properties in its own right, and it is also

unclear whether it is necessary for all three boundaries

to be special in their own right in order to allow this. At

this point we may only conclude that the Brandon

criterion does not provide useful information about the

behaviors of triple junctions, though an exponent

somewhere between –2/3 and –1 seems to give a cri-

terion that may be predictive of a consistently-behav-

ing junction.

Fig. 5 Slices 1 and 2 from the second tricrystal, illustrating the
stability of the dihedral angles formed by the grain boundaries.
The approximate traces of the intended symmetrical tilt grain
boundary planes are indicated

Table 3 Comparison of the deviations of misorientation in our two tricrystals with the limits allowed by various criteria of specialness.
A check-mark indicates that the experimental boundary satisfies the given criterion

Brandon Pumphrey Palumbo
et al.

Ishida-McLean

n = –1/2 n = –2/3 n = –3/4 n = –4/5 n = –5/6 n = –1

Allowed by Criterion S5 Dhmax 6.71� 5.13� 4.49� 4.14� 3.92� 3.00�
S25 Dhmax 3� 1.75� 1.34� 1.14� 1.03� 0.60�

Tric. 1 ‘‘Bad’’ S5 Dh = 5.6� h

S5 Dh = 5.2� h

S25 Dh = 1.5� h h

Tric. 2 ‘‘Good’’ S5 Dh = 1.2� h h h h h h

S5 Dh = 2.0� h h h h h h

S25 Dh = 1.7� h h

Table 2 Targeted and measured dihedral angles opposite the
individual grain boundaries, at various locations in the tricrystal

S5 S5 S25

Target dihedral angle 116.6� 116.6� 126.8�
Tricrystal 1––Measured dihedral angles
Slice 1 120� 117� 123�
Slice 2 109� 112� 139�
Slice 3 103� 125� 132�
Slice 4 115� 115� 130�
Slice 5 126� 119� 115�
Slice 6 120� 127� 113�
Tricrystal 2––Measured dihedral angles
Slice 1 118� 117� 126�
Slice 2 116� 117� 127�
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Conclusions

Careful consideration of the underlying principles of

the Brandon criterion, and the various related criteria

of specialness for grain boundaries, can provide useful

insight into its proper use and application in the origi-

nally-unintended application of categorizing individual

grain boundaries. The proper selection of parameters

to be used in such criteria depends upon the specific

property or behavior under consideration, and should

minimally reflect an informed choice of h0, based upon

suitable information in the literature.

The Brandon criterion appears to be too permissive

to predict the behavior of a triple junction, but it re-

mains unclear whether any other criterion is more

reliable, or indeed how such criteria should be applied

to the three boundaries that meet at a junction, with

respect to the number of boundaries that must meet

the criterion in order for the junction to have special

properties in its own right.
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